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• Quantum correlations.

• In this lecture we will be concerned with the main topic of these lectures:
quantum correlations.

• Firstly, an exposition of quantization of the principal measure of
correlations, correlation coefficient will be given.

• Secondly, we will define and study the coefficient of quantum correlations.

• Finally, we will indicate why the techniques described in the previous
lectures are indispensable for that purpose.

• Warning: existence of correlations in the quantum theory, likewise in the
classical case, is not equivalent to the existence of causal relations.
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• As the first step, we recall that the correlation coefficient for the classical
case was given as:

C(X, Y ) =
E(XY ) − E(X)E(Y )

(E(X2) − E(X)2)
1
2(E(Y 2) − E(Y )2)

1
2

• We rewrite this definition in the quantum context.

• Let a C∗-algebra A be a specific algebra of observables (as in Rule 1), ϕ

a state on A (as in Rule 3), and A, A′ ∈ A be observables.

• Further, we replace the classical expectation value E(X) by the quantum
one ϕ(A) ≡ 〈A〉.
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• We note (we advise to verify these formulas)

〈

(A − 〈A〉)2
〉

=
〈

A2
〉

− 〈A〉2 (1)

and

〈(A − 〈A〉) (A′ − 〈A′〉)〉 = 〈AA′〉 − 〈A〉 〈A′〉 (2)

• Consequently, in the quantum context, one can write

Cq(A, A′) =
〈(A − 〈A〉) (A′ − 〈A′〉)〉

〈

(A − 〈A〉)2
〉

1
2
〈

(A′ − 〈A′〉)2
〉

1
2

(3)
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• This form of correlation coefficient agrees with that given in Omnés
book.

• Further, we note that an application of Schwarz inequality shows that
Cq(A, A′) ∈ [−1,+1], so Cq(A, A′) is normalized.

• Again, it is advised to verify the above statement!

• In particular, one can speak about “quantum positive correlations” etc.

• As the second step we wish to show that the correlation coefficient,
Cq(A, A′), can recognize the “very entangled” states.

• Following Omnés one has:
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Example 1. – We consider the composite system such that its algebra
of observables is given by B(H)⊗B(H) and we take a state ϕ of the
form ϕ(·) = Tr(̺ ·), where ̺ is a density matrix (on the Hilbert space
H⊗H).

– Let us select two observables of the form A = 0 · Pe0 + 1 · Pe1 and
the same for A′, where Pe stands for the orthogonal projector on the
vector e; to shorten notation we write A instead of A ⊗ 1 and A′

instead of 1⊗ A′.

– We want to find a special state which gives maximal value of Cq.

– Observe that the condition Cq = 1 gives:
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–

0 =
(

〈

A2
〉

− 2 〈A〉2 + 〈A〉2
) (

〈

(A′)2
〉

− 2 〈A′〉2 + 〈A′〉2
)

− [〈AA′〉 − 2 〈A〉 〈A′〉 + 〈A〉 〈A′〉]2 (4)

– or equivalently for our choice of A and A′ (A2 = A, etc)

0 = 〈A〉 〈A′〉 [1 − 〈A〉 − 〈A′〉 + 2 〈AA′〉] − 〈AA′〉2 (5)

– Let us adopt the following convention: ρij′,kl′ = 〈ij′|ρ|kl′〉.
– Assuming additionally that dimH = 2, so considering two dimensional

case, one has
– TrρϕAA′ = ρ11,11, Trρϕ1 ⊗ A′ = (ρ11,11 + ρ01,01), TrρϕA ⊗ 1 =

(ρ11,11 + ρ10,10).
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– The formula (5) can be rewritten as

0 = (ρ11,11 + ρ10,10) (ρ11,11 + ρ01,01) (1 − ρ10,10 − ρ01,01) − ρ2
11,11

(6)
– One can define maximally entangled state by

Ψ =
1√
2

(|10〉 − |01〉) ≡ 1√
2
(e1 ⊗ e0 − e0 ⊗ e1). (7)

We put ρΨ = |Ψ〉 〈Ψ|. Then, (ρΨ)11,11 = 0 = (ρΨ)00,00, (ρΨ)01,01 =
1
2, (ρΨ)10,10 = 1

2. Obviously, (6) is fulfilled for the state ρΨ.
– Thus, the state ρΨ, where Ψ is a maximally entangled vector, gives an

example of maximal correlation coefficient for the observables A and
A′, i.e. Cq(A, A′) = 1.
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Example 2. Let ω be a separable state on A = A1 ⊗ A2,

ω(·) =

n
∑

i=1

λi(ω
1
i ⊗ ω2

i )(·),

where ωk
i , k = 1, 2, i = 1, 2, ..., n are states in SAk

. It is a simple matter
to check that, in general,

ω(A1 ⊗ 1 · 1⊗ A2) 6= ω(A1 ⊗ 1)ω(1⊗ A2)

for Ak ∈ Ak.

Therefore, the state ω contains some correlations. However, as the state
ω is separable one, these correlations are considered to be of classical
nature only!
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• The straightforward quantization of the correlation coefficient gives a
device for finding the size of correlations.

• BUT, the coefficient Cq is not able to distinguish correlations of quantum
nature from that of classical nature.

• Thus, a new measure of quantum correlation should be introduced.

• This will be done by defining the coefficient of quantum correlations.

• The basic idea to define “pure” quantum correlations is to “subtract”
classical correlations.

• In other words we will look for the best approximation of a given state ω

by separable states.

• However, a given state ω, in general, can possess various decompositions.
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• Thus, to carry out the analysis of such approximations we should use the
decomposition theory, described in fourth lecture.

• Now, we will proceed to coefficient of (quantum) correlations for a
quantum composite system specified by (A = A1 ⊗ A2, SA), where Ai

are C∗-algebras.

• Thus we will consider C∗-algebra case.

• We begin with the definition of the restriction maps

(r1ω)(A) = ω(A ⊗ 1) (8)

(r2ω)(B) = ω(1⊗ B), (9)

where ω ∈ SA, A ∈ A1, and B ∈ A2.
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• Clearly, ri : SA → SAi
and the restriction map ri is continuous (in

weak-∗ topology), i = 1, 2.

• Let us take a measure µ on SA.

• Define

µi(Fi) = µ(r−1
i (Fi)) (10)

for i = 1, 2, where Fi is a Borel subset in SAi
.

• It is easy to check that the formula (10) provides the well defined
measures µi on SAi

, i = 1, 2.

• Having two measures µ1, µ2 on S1, and S2 respectively, we want to
”produce” a new measure ⊠µ on SA1 × SA2.
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• To this end, firstly, let us consider the case of finitely supported probability
measure µ:

µ =

N
∑

i=1

λiδρi
(11)

where λi ≥ 0,
∑N

i=1 λi = 1, and δρi
denotes the Dirac’s measure.

• We define

µ1 =

N
∑

i=1

λiδr1ρi
(12)

and

µ2 =

N
∑

i=1

λiδr2ρi
. (13)

IFTiA Gdańsk University – Poland 12



Quantum correlations VI. Gdansk-Houston, March, 2015

• Then

⊠µ =
N

∑

i=1

λiδr1ρi
× δr2ρi

(14)

provides a well defined measure on SA1 × SA2.

• Here SA1 ×SA2 is understood as a measure space obtained as a product
of two measure spaces SA1 and SA2.

• A measure structure on SAi
is defined as the Borel structure determined

by the corresponding weak-∗ topology on SAi
, i = 1, 2.

• An arbitrary fixed decomposition of a state ω ∈ SA corresponds to a
measure µ such that ω =

∫

S
νdµ(ν).
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• As there are, in general, many decompositions (it was pointed out in
the fourth and fifth lectures) we will be interested in measures from the
following set

Mω(SA) ≡ Mω = {µ : ω =

∫

S

νdµ(ν)},

i.e. the set of all Radon probability measures on SA with the fixed
barycenter ω.

• Take an arbitrary measure µ from Mω. There exists a net of discrete
measures (having a finite support) µk such that µk → µ, and the
convergence is understood in the weak-∗ topology on SA.
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• Defining µk
1 (µk

2) analogously as µ1 (µ2 respectively; cf equations (12),
(13)), one has µk

1 → µ1 and µk
2 → µ2, where again the convergence is

taken in the weak-∗ topology on SA1 (SA2 respectively).

• Then define, for each k, ⊠µk as it was done in (14).

• We can verify that
{

⊠µk
}

is convergent (in weak ∗-topology) to a
measure on SA1 × SA2.

• Consequently, taking the weak-∗ limit we arrive at the measure ⊠µ on
SA1 × SA2. It follows easily that ⊠µ does not depend on the chosen
approximation procedure.
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• Now, we are in position to give the definition of the coefficient of
quantum correlations, d(ω, A1, A2) ≡ d(ω, A), where Ai ∈ Ai.

• Definition 3. Let a quantum composite system (A = A1 ⊗ A2,SA) be
given. Take a ω ∈ SA. We define the coefficient of quantum correlations
as

d(ω, A) = inf
µ∈Mω(SA)

∣

∣

∣

∣

∣

∫

SA

ξ(A)dµ(ξ) −
∫

SA1
×SA2

ξ(A)(d ⊠ µ)(ξ)

∣

∣

∣

∣

∣

(15)

• The formula (15) is a ”measure” of extra non classical type of correlations.

• Namely, following the strategy of Kadison-Ringrose example, the example
discussed in the fifth lecture, an evaluation of a distance between the
given state ω and the set of approximative separable states is done.
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• It is a simple matter to see that d(ω, A) is equal to 0 if the state ω is a
separable one.

• The converse statement is much less obvious.

• However, we are able to prove it.

• Namely:

Theorem 4. Let A be the tensor product of two C*-algebras A1, A2.
Then state ω ∈ SA is separable if and only if d(ω, A) = 0 for all
A ∈ A1 ⊗ A2

• The basic idea of the proof of the statement that d(ω, A) = 0 implies
separability of ω relies on the study of continuity properties of the
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function

Mω(SA) ∋ µ 7→
∫

SA

ξ(A)dµ(ξ) −
∫

SA1
×SA2

ξ(A)(d ⊠ µ)(ξ) (16)

• The proof falls naturally into few steps.

1. Mω(SA) is a compact set.
2. The mapping Mω(SA) ∋ µ 7→ ⊠µ ∈ M+(SA1 × SA2) is weakly

continuous.
3. The continuity proved in the second step implies that the function

(16) is a real valued, continuous function defined on a compact space.
4. Hence, by Weierstrass theorem, infimum is attainable.
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Therefore, the condition d(ω, A) = 0 means that

ω(A) =

∫

SA

ξ(A)dµ0(ξ) =

∫

SA1
×SA2

ξ(A)d ⊠ µ0(ξ), (17)

for all A = A1 ⊗ A2.

But, this means the separability of ω!

• Theorem 4 may be summarized by saying that any separable state
contains “classical” correlations only.

• Therefore, an entangled state contains “non-classical” (or pure
quantum) correlations.

IFTiA Gdańsk University – Poland 19



Quantum correlations VI. Gdansk-Houston, March, 2015

• To comment the question of separability of normal states we have two
remarks:

1. (indirect way)

As we have considered C∗-algebra case, taking a normal state ϕ ∈
S

n
M

≡ SM ∩ M∗ ⊂ SM, we can apply Theorem 4 for its analysis.

If d(ϕ, A) = 0 we are getting a “separable” decomposition of ϕ.

However, still one must check whether components of the
decomposition are normal or not. In other words, one must examine
whether the measure providing the given decomposition is supported
by S

n
M

.

It is worth pointing out that the lecture fourth provides examples of
measures being supported by Ext(Sn

M
) (if additionally the condition

SC is satisfied).

IFTiA Gdańsk University – Poland 20



Quantum correlations VI. Gdansk-Houston, March, 2015

2. (a possibility for a direct way)

One can try to modify the results obtained for C∗-algebra case to that
which are relevant for W ∗-algebra case.

However, there are two essential differences.

The first one: the closure of convex hull should be carried out with
respect to the operator space projective norm topology.

The second difference leads to a great problem.

Namely S
n
M

is compact, in general, with respect to another topology
than that which gives compactness of SM.

To illustrate this let us consider M = B(H), where H is an infinite
dimensional Hilbert space. Then S

n
B(H) is a compact subset of FT (H)

when it is equipped with σ(FT (H),FC(H))-topology.

IFTiA Gdańsk University – Poland 21



Quantum correlations VI. Gdansk-Houston, March, 2015

SB(H) is compact with respect to σ(B(H)∗, B(H))-topology.

Moreover, although the restriction (rω)(A) = ω(A ⊗ 1), where ω ∈
(B(H⊗ B(H))

∗
is also well defined for a density matrix (it is given

by the partial trace) the restriction r is not, in general, σ(FT (H ⊗
H),FC(H⊗H)) – σ(FT (H),FC(H)) continuous.

As the continuity of the restriction map r was crucial, the C∗-algebra
case can not be straightforwardly modified.
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