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e Quantum correlations.

e In this lecture we will be concerned with the main topic of these lectures:
quantum correlations.

e Firstly, an exposition of quantization of the principal measure of
correlations, correlation coefficient will be given.

e Secondly, we will define and study the coefficient of quantum correlations.

e Finally, we will indicate why the techniques described in the previous
lectures are indispensable for that purpose.

e \Warning: existence of correlations in the quantum theory, likewise in the
classical case, is not equivalent to the existence of causal relations.
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e As the first step, we recall that the correlation coefficient for the classical
case was given as:

C(X,Y) =

(B(X2) - B(X)2)3(E(Y?) — E(Y)?)?

e \We rewrite this definition in the quantum context.

e Let a C*-algebra 2 be a specific algebra of observables (as in Rule 1), ¢
a state on 2 (as in Rule 3), and A, A’ € 2 be observables.

e Further, we replace the classical expectation value E(X) by the quantum
one p(A) = (A).
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e We note (we advise to verify these formulas)
(A= ()?) = (4?) = (4’ (1)

and

(A= {A4)) (A" = (A)) = (4A") — (4) (4) (2)
e Consequently, in the quantum context, one can write

(A~ <A>3 (A" (A))) 3)

Cy(A, A) =
(A= (A))" (A= (a)?)

N
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e This form of correlation coefficient agrees with that given in Omnés
book.

e Further, we note that an application of Schwarz inequality shows that
C,(A,A") e [-1,+1], so C (A, A”) is normalized.

e Again, it is advised to verify the above statement!
e |n particular, one can speak about “quantum positive correlations’ etc.

e As the second step we wish to show that the correlation coefficient,
C,(A, A"), can recognize the “very entangled” states.

e Following Omnés one has:
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Example 1. — We consider the composite system such that its algebra
of observables is given by B(H) ® B(H) and we take a state ¢ of the

form p(-) = Tr(p -), where ¢ is a density matrix (on the Hilbert space
H&®H).

— Let us select two observables of the form A =0-F,, +1- P, and
the same for A’, where P, stands for the orthogonal projector on the

vector e; to shorten notation we write A instead of A 1 and A’
instead of 1T @ A’.

— We want to find a special state which gives maximal value of C,.

— Observe that the condition C, =1 gives:
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0 = ((4%) =204+ (4)?) (((4)?) - 2(4)” + (4)*)
— [(AA") = 2 (A) (A) + (A) (A (4)

— or equivalently for our choice of A and A’ (A? = A, etc)
0 = (A) (A') [1 = (A) = (A) +2(A4")] — (A4’ (5)

— Let us adopt the following convention: p;;y 11 = (ij'|p|kl’).

— Assuming additionally that dimH = 2, so considering two dimensional
case, one has

- TI‘,OQDAA/ = P11,11, Trpgp]]- 0% A = (,011,11 + 001,01), TI“,OSOA Q1 =
(p11.11 + P10.10).-
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— The formula (5) can be rewritten as

0= (,011,11 + Plo,lo) (,011,11 + ,001,01) (1 — P10,10 — ,001,01) — ,0%1,11

(6)

— One can define maximally entangled state by

1 1
U=—(]10) —|01)) = —(e1 ®eg — ey R eq). I
\@(|> 01)) \@(1 0— €0 ®e€1) (7)
We put py = |¥) (V[. Then, (pw)11,11 = 0= (pw)oo,00, (Pw)o1,01 =
%, (pw)10,10 = 5. Obviously, (6) is fulfilled for the state py.
— Thus, the state py, where V is a maximally entangled vector, gives an

example of maximal correlation coefficient for the observables A and
A e Cy(AA) =1,
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Example 2. Let w be a separable state on 2 = A, ® As,
w(-) =) Ailw] @w))(-),
i=1

where wf, k =1,2,i=1,2,...,n are states in Gy, . It is a simple matter
to check that, in general,

W(Al &) 1-1 &) A2) 7& W(Al &) ]I)W(]l X Az)
for Ay, € .

Therefore, the state w contains some correlations. However, as the state
w IS separable one, these correlations are considered to be of classical
nature only!
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e The straightforward quantization of the correlation coefficient gives a
device for finding the size of correlations.

e BUT, the coefficient C, is not able to distinguish correlations of quantum
nature from that of classical nature.

e Thus, a new measure of quantum correlation should be introduced.
e This will be done by defining the coefficient of quantum correlations.

e The basic idea to define “pure” quantum correlations is to “subtract”
classical correlations.

e In other words we will look for the best approximation of a given state w
by separable states.

e However, a given state w, in general, can possess various decompositions.
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e Thus, to carry out the analysis of such approximations we should use the
decomposition theory, described in fourth lecture.

e Now, we will proceed to coefficient of (quantum) correlations for a
quantum composite system specified by (A = 2; ® Ao, Sy), where 2,
are C'*-algebras.

e Thus we will consider C'*-algebra case.

e We begin with the definition of the restriction maps

where w € Gy, A € A4, and B € 5.
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Clearly, r; : Gy — Gg and the restriction map r; is continuous (in
weak-* topology), ¢ = 1, 2.

Let us take a measure u on Gy.

Define
pi(Fi) = p(r; 1 (Fy) (10)

for i = 1,2, where I is a Borel subset in Gy

It is easy to check that the formula (10) provides the well defined
measures (; on Gy, 1 = 1,2.

Having two measures 1, ps on &1, and Go respectively, we want to
produce” a new measure Xi on Gy, X Gg,.
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e Tothis end, firstly, let us consider the case of finitely supported probability
measure [i:

N
1=1

where \; > 0, Z,fil A; = 1, and 9, denotes the Dirac’s measure.

e We define
N
H1 =) Xibrp, (12)
i—1
and
N
o = ) Ailrgpy. (13)
i—1
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e [hen

N
My = Z >‘i57“1pz' X 57”2[%‘ (14)
1=1

provides a well defined measure on Gy, X Gy,.

o Here Gg, X Gy, Is understood as a measure space obtained as a product
of two measure spaces Gy, and Gg,,.

e A measure structure on Gy, is defined as the Borel structure determined
by the corresponding weak-* topology on Gy, ¢ = 1, 2.

e An arbitrary fixed decomposition of a state w € Gy corresponds to a
measure /i such that w = [ vdu(v).
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e As there are, in general, many decompositions (it was pointed out in
the fourth and fifth lectures) we will be interested in measures from the
following set

M,(Gy) =M, ={p:w= /Gyd,u(u)},

l.e. the set of all Radon probability measures on Gy with the fixed
barycenter w.

e Take an arbitrary measure p from M,,. There exists a net of discrete
measures (having a finite support) pr such that pp — p, and the
convergence is understood in the weak-* topology on Gy.
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o Defining u¥ (u%5) analogously as ji; (juo respectively; cf equations (12),
(13)), one has pu§ — p1 and p5 — po, where again the convergence is
taken in the weak-* topology on Gy, (Gg, respectively).

e Then define, for each k, Xu* as it was done in (14).

e We can verify that {Xu”*} is convergent (in weak *-topology) to a
measure on Gy, X Gyy,.

e Consequently, taking the weak-* limit we arrive at the measure Xy on
Gy, X Gy,. It follows easily that ;1 does not depend on the chosen
approximation procedure.

IFTiA Gdansk University — Poland 15



Quantum correlations VI. Gdansk-Houston, March, 2015

e Now, we are in position to give the definition of the coefficient of
quantum correlations, d(w, A1, As) = d(w, A), where A; € ;.

e Definition 3. Let a quantum composite system (A = 2A; @ Ay, Sy) be
given. Take aw € Ggy. We define the coefficient of quantum correlations
as

dlw,A) = inf

peEMu(Sy)

E(A)dp(€) — / (AR u)(€)| (15)

Sy 6@1 X 6912

e The formula (15) is a "measure” of extra non classical type of correlations.

e Namely, following the strategy of Kadison-Ringrose example, the example
discussed in the fifth lecture, an evaluation of a distance between the
given state w and the set of approximative separable states is done.
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e It is a simple matter to see that d(w, A) is equal to O if the state w is a
separable one.

e [ he converse statement is much less obvious.
e However, we are able to prove it.

e Namely:

Theorem 4. Let 2 be the tensor product of two C*-algebras A, Us.
Then state w € &g is separable if and only if d(w,A) = 0 for all
A€ 2, ® Ay

e The basic idea of the proof of the statement that d(w, A) = 0 implies
separability of w relies on the study of continuity properties of the
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function

Ma(8) 3 = [ e A)dute) - /6 _SAERN©  (6)

e The proof falls naturally into few steps.

1. M,(Sy) is a compact set.

2. The mapping M,(Sy) 2 p — Ky € MT(Sy, X Gg,) is weakly
continuous.

3. The continuity proved in the second step implies that the function
(16) is a real valued, continuous function defined on a compact space.

4. Hence, by Weierstrass theorem, infimum is attainable.
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Therefore, the condition d(w, A) = 0 means that

Soy

o) = [ €@ = [ eaRpole), ()
6Q[1><6Q[2
forall A = Al &) AQ.
But, this means the separability of w!

e Theorem 4 may be summarized by saying that any separable state
contains “classical” correlations only.

e Therefore, an entangled state contains “non-classical” (or pure
quantum) correlations.
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e To comment the question of separability of normal states we have two
remarks:

1. (indirect way)

As we have considered (C'*-algebra case, taking a normal state ¢ €
Sy = G N M, C Gon, we can apply Theorem 4 for its analysis.

If d(p, A) = 0 we are getting a “separable” decomposition of .

However, still one must check whether components of the
decomposition are normal or not. In other words, one must examine
whether the measure providing the given decomposition is supported
by Gy

It is worth pointing out that the lecture fourth provides examples of
measures being supported by Ext(GF,) (if additionally the condition
SC is satisfied).
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2. (a possibility for a direct way)

One can try to modify the results obtained for C*-algebra case to that
which are relevant for W *-algebra case.

However, there are two essential differences.

The first one: the closure of convex hull should be carried out with
respect to the operator space projective norm topology.

The second difference leads to a great problem.

Namely Gy, is compact, in general, with respect to another topology
than that which gives compactness of Gyy.

To illustrate this let us consider 9t = B(H), where H is an infinite
dimensional Hilbert space. Then &%, is a compact subset of Fr(H)

when it is equipped with o(Fr(H), Fo(H))-topology.
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S (1) is compact with respect to o(B(H)*, B(H))-topology.

Moreover, although the restriction (rw)(A) = w(A ® 1), where w €
(B(H ® B(H))" is also well defined for a density matrix (it is given
by the partial trace) the restriction r is not, in general, o(Fr(H ®
H), Fc(H®H)) = o(Fr(H),Fc(H)) continuous.

As the continuity of the restriction map r was crucial, the C'*-algebra
case can not be straightforwardly modified.
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