

Quantum correlations VI

Wladyslaw Adam Majewski

Instytut Fizyki Teoretycznej i Astrofizyki, UG
ul. Wita Stwosza 57, 80-952 Gdańsk, Poland;

IFTiA Gdańsk University – Poland

- *Quantum correlations.*
- In this lecture we will be concerned with the main topic of these lectures: *quantum correlations*.
- Firstly, an exposition of quantization of the principal measure of correlations, correlation coefficient will be given.
- Secondly, we will define and study the coefficient of quantum correlations.
- Finally, we will indicate why the techniques described in the previous lectures are indispensable for that purpose.
- **Warning:** existence of correlations in the quantum theory, likewise in the classical case, is not equivalent to the existence of causal relations.

- As the first step, we recall that the correlation coefficient for the classical case was given as:

$$C(X, Y) = \frac{E(XY) - E(X)E(Y)}{(E(X^2) - E(X)^2)^{\frac{1}{2}}(E(Y^2) - E(Y)^2)^{\frac{1}{2}}}$$

- We rewrite this definition in the quantum context.
- Let a C^* -algebra \mathfrak{A} be a specific algebra of observables (as in Rule 1), φ a state on \mathfrak{A} (as in Rule 3), and $A, A' \in \mathfrak{A}$ be observables.
- Further, we replace the classical expectation value $E(X)$ by the quantum one $\varphi(A) \equiv \langle A \rangle$.

- We note (we advise to verify these formulas)

$$\langle (A - \langle A \rangle)^2 \rangle = \langle A^2 \rangle - \langle A \rangle^2 \quad (1)$$

and

$$\langle (A - \langle A \rangle)(A' - \langle A' \rangle) \rangle = \langle AA' \rangle - \langle A \rangle \langle A' \rangle \quad (2)$$

- Consequently, in the quantum context, one can write

$$C_q(A, A') = \frac{\langle (A - \langle A \rangle)(A' - \langle A' \rangle) \rangle}{\langle (A - \langle A \rangle)^2 \rangle^{\frac{1}{2}} \langle (A' - \langle A' \rangle)^2 \rangle^{\frac{1}{2}}} \quad (3)$$

- This form of correlation coefficient agrees with that given in Omn s book.
- Further, we note that an application of Schwarz inequality shows that $C_q(A, A') \in [-1, +1]$, so $C_q(A, A')$ is normalized.
- Again, it is advised to verify the above statement!
- In particular, one can speak about “quantum positive correlations” etc.
- As the second step we wish to show that the correlation coefficient, $C_q(A, A')$, can recognize the “very entangled” states.
- Following Omn s one has:

Example 1. – We consider the composite system such that its algebra of observables is given by $B(\mathcal{H}) \otimes B(\mathcal{H})$ and we take a state φ of the form $\varphi(\cdot) = \text{Tr}(\varrho \cdot)$, where ϱ is a density matrix (on the Hilbert space $\mathcal{H} \otimes \mathcal{H}$).

- Let us select two observables of the form $A = 0 \cdot P_{e_0} + 1 \cdot P_{e_1}$ and the same for A' , where P_e stands for the orthogonal projector on the vector e ; to shorten notation we write A instead of $A \otimes \mathbb{1}$ and A' instead of $\mathbb{1} \otimes A'$.
- We want to find a special state which gives maximal value of C_q .
- Observe that the condition $C_q = 1$ gives:

$$\begin{aligned}
 0 &= \left(\langle A^2 \rangle - 2 \langle A \rangle^2 + \langle A \rangle^2 \right) \left(\langle (A')^2 \rangle - 2 \langle A' \rangle^2 + \langle A' \rangle^2 \right) \\
 &\quad - [\langle AA' \rangle - 2 \langle A \rangle \langle A' \rangle + \langle A \rangle \langle A' \rangle]^2
 \end{aligned} \tag{4}$$

- or equivalently for our choice of A and A' ($A^2 = A$, etc)

$$0 = \langle A \rangle \langle A' \rangle [1 - \langle A \rangle - \langle A' \rangle + 2 \langle AA' \rangle] - \langle AA' \rangle^2 \tag{5}$$

- Let us adopt the following convention: $\rho_{ij',kl'} = \langle ij'|\rho|kl' \rangle$.
- Assuming additionally that $\dim \mathcal{H} = 2$, so considering two dimensional case, one has
- $\text{Tr} \rho_\varphi AA' = \rho_{11,11}$, $\text{Tr} \rho_\varphi \mathbb{1} \otimes A' = (\rho_{11,11} + \rho_{01,01})$, $\text{Tr} \rho_\varphi A \otimes \mathbb{1} = (\rho_{11,11} + \rho_{10,10})$.

- The formula (5) can be rewritten as

$$0 = (\rho_{11,11} + \rho_{10,10}) (\rho_{11,11} + \rho_{01,01}) (1 - \rho_{10,10} - \rho_{01,01}) - \rho_{11,11}^2 \quad (6)$$

- One can define maximally entangled state by

$$\Psi = \frac{1}{\sqrt{2}} (|10\rangle - |01\rangle) \equiv \frac{1}{\sqrt{2}} (e_1 \otimes e_0 - e_0 \otimes e_1). \quad (7)$$

We put $\rho_\Psi = |\Psi\rangle \langle \Psi|$. Then, $(\rho_\Psi)_{11,11} = 0 = (\rho_\Psi)_{00,00}$, $(\rho_\Psi)_{01,01} = \frac{1}{2}$, $(\rho_\Psi)_{10,10} = \frac{1}{2}$. Obviously, (6) is fulfilled for the state ρ_Ψ .

- Thus, the state ρ_Ψ , where Ψ is a maximally entangled vector, gives an example of maximal correlation coefficient for the observables A and A' , i.e. $C_q(A, A') = 1$.

Example 2. Let ω be a separable state on $\mathfrak{A} = \mathfrak{A}_1 \otimes \mathfrak{A}_2$,

$$\omega(\cdot) = \sum_{i=1}^n \lambda_i (\omega_i^1 \otimes \omega_i^2)(\cdot),$$

where ω_i^k , $k = 1, 2$, $i = 1, 2, \dots, n$ are states in $\mathfrak{S}_{\mathfrak{A}_k}$. It is a simple matter to check that, in general,

$$\omega(A_1 \otimes \mathbb{1} \cdot \mathbb{1} \otimes A_2) \neq \omega(A_1 \otimes \mathbb{1})\omega(\mathbb{1} \otimes A_2)$$

for $A_k \in \mathfrak{A}_k$.

Therefore, the state ω contains some correlations. However, as the state ω is separable one, these correlations are considered to be of classical nature only!

- The straightforward quantization of the correlation coefficient gives a device for finding the size of correlations.
- BUT, the coefficient C_q is not able to distinguish correlations of quantum nature from that of classical nature.
- Thus, a new measure of quantum correlation should be introduced.
- This will be done by defining the coefficient of quantum correlations.
- The basic idea to define “pure” quantum correlations is to “subtract” classical correlations.
- In other words we will look for the best approximation of a given state ω by separable states.
- However, a given state ω , in general, can possess various decompositions.

- Thus, to carry out the analysis of such approximations we should use the decomposition theory, described in fourth lecture.
- Now, we will proceed to coefficient of (quantum) correlations for a quantum composite system specified by $(\mathfrak{A} = \mathfrak{A}_1 \otimes \mathfrak{A}_2, \mathfrak{S}_{\mathfrak{A}})$, where \mathfrak{A}_i are C^* -algebras.
- Thus we will consider C^* -algebra case.
- We begin with the definition of the restriction maps

$$(r_1\omega)(A) = \omega(A \otimes \mathbb{1}) \quad (8)$$

$$(r_2\omega)(B) = \omega(\mathbb{1} \otimes B), \quad (9)$$

where $\omega \in \mathfrak{S}_{\mathfrak{A}}$, $A \in \mathfrak{A}_1$, and $B \in \mathfrak{A}_2$.

- Clearly, $r_i : \mathfrak{S}_{\mathfrak{A}} \rightarrow \mathfrak{S}_{\mathfrak{A}_i}$ and the restriction map r_i is continuous (in weak-* topology), $i = 1, 2$.
- Let us take a measure μ on $\mathfrak{S}_{\mathfrak{A}}$.
- Define

$$\mu_i(F_i) = \mu(r_i^{-1}(F_i)) \quad (10)$$

for $i = 1, 2$, where F_i is a Borel subset in $\mathfrak{S}_{\mathfrak{A}_i}$.

- It is easy to check that the formula (10) provides the well defined measures μ_i on $\mathfrak{S}_{\mathfrak{A}_i}$, $i = 1, 2$.
- Having two measures μ_1, μ_2 on \mathfrak{S}_1 , and \mathfrak{S}_2 respectively, we want to "produce" a new measure $\boxtimes\mu$ on $\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}$.

- To this end, firstly, let us consider the case of finitely supported probability measure μ :

$$\mu = \sum_{i=1}^N \lambda_i \delta_{\rho_i} \quad (11)$$

where $\lambda_i \geq 0$, $\sum_{i=1}^N \lambda_i = 1$, and δ_{ρ_i} denotes the Dirac's measure.

- We define

$$\mu_1 = \sum_{i=1}^N \lambda_i \delta_{r_1 \rho_i} \quad (12)$$

and

$$\mu_2 = \sum_{i=1}^N \lambda_i \delta_{r_2 \rho_i}. \quad (13)$$

- Then

$$\boxtimes \mu = \sum_{i=1}^N \lambda_i \delta_{r_1 \rho_i} \times \delta_{r_2 \rho_i} \quad (14)$$

provides a well defined measure on $\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}$.

- Here $\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}$ is understood as a measure space obtained as a product of two measure spaces $\mathfrak{S}_{\mathfrak{A}_1}$ and $\mathfrak{S}_{\mathfrak{A}_2}$.
- A measure structure on $\mathfrak{S}_{\mathfrak{A}_i}$ is defined as the Borel structure determined by the corresponding weak-* topology on $\mathfrak{S}_{\mathfrak{A}_i}$, $i = 1, 2$.
- An arbitrary fixed decomposition of a state $\omega \in \mathfrak{S}_{\mathfrak{A}}$ corresponds to a measure μ such that $\omega = \int_{\mathfrak{S}} \nu d\mu(\nu)$.

- As there are, in general, many decompositions (it was pointed out in the fourth and fifth lectures) we will be interested in measures from the following set

$$M_\omega(\mathfrak{S}_{\mathfrak{A}}) \equiv M_\omega = \{\mu : \omega = \int_{\mathfrak{S}} \nu d\mu(\nu)\},$$

i.e. the set of all Radon probability measures on $\mathfrak{S}_{\mathfrak{A}}$ with the fixed barycenter ω .

- Take an arbitrary measure μ from M_ω . There exists a net of discrete measures (having a finite support) μ_k such that $\mu_k \rightarrow \mu$, and the convergence is understood in the weak-* topology on $\mathfrak{S}_{\mathfrak{A}}$.

- Defining μ_1^k (μ_2^k) analogously as μ_1 (μ_2 respectively; cf equations (12), (13)), one has $\mu_1^k \rightarrow \mu_1$ and $\mu_2^k \rightarrow \mu_2$, where again the convergence is taken in the weak-* topology on $\mathfrak{S}_{\mathfrak{A}_1}$ ($\mathfrak{S}_{\mathfrak{A}_2}$ respectively).
- Then define, for each k , $\boxtimes\mu^k$ as it was done in (14).
- We can verify that $\{\boxtimes\mu^k\}$ is convergent (in weak *-topology) to a measure on $\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}$.
- Consequently, taking the weak-* limit we arrive at the measure $\boxtimes\mu$ on $\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}$. It follows easily that $\boxtimes\mu$ does not depend on the chosen approximation procedure.

- Now, we are in position to give the definition of **the coefficient of quantum correlations**, $d(\omega, A_1, A_2) \equiv d(\omega, A)$, where $A_i \in \mathfrak{A}_i$.
- Definition 3.** *Let a quantum composite system $(\mathfrak{A} = \mathfrak{A}_1 \otimes \mathfrak{A}_2, \mathfrak{S}_{\mathfrak{A}})$ be given. Take a $\omega \in \mathfrak{S}_{\mathfrak{A}}$. We define the coefficient of quantum correlations as*

$$d(\omega, A) = \inf_{\mu \in M_{\omega}(\mathfrak{S}_{\mathfrak{A}})} \left| \int_{\mathfrak{S}_{\mathfrak{A}}} \xi(A) d\mu(\xi) - \int_{\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}} \xi(A) (d \boxtimes \mu)(\xi) \right| \quad (15)$$

- The formula (15) is a "measure" of extra non classical type of correlations.
- Namely, following the strategy of Kadison-Ringrose example, the example discussed in the fifth lecture, an evaluation of a distance between the given state ω and the set of approximative separable states is done.

- It is a simple matter to see that $d(\omega, A)$ is equal to 0 if the state ω is a separable one.
- The converse statement is much less obvious.
- However, we are able to prove it.
- Namely:

Theorem 4. *Let \mathfrak{A} be the tensor product of two C^* -algebras $\mathfrak{A}_1, \mathfrak{A}_2$. Then state $\omega \in \mathfrak{S}_{\mathfrak{A}}$ is separable if and only if $d(\omega, A) = 0$ for all $A \in \mathfrak{A}_1 \otimes \mathfrak{A}_2$*

- The basic idea of the proof of the statement that $d(\omega, A) = 0$ implies separability of ω relies on the study of continuity properties of the

function

$$M_\omega(\mathfrak{S}_{\mathfrak{A}}) \ni \mu \mapsto \int_{\mathfrak{S}_{\mathfrak{A}}} \xi(A) d\mu(\xi) - \int_{\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}} \xi(A)(d \boxtimes \mu)(\xi) \quad (16)$$

- The proof falls naturally into few steps.
 1. $M_\omega(\mathfrak{S}_{\mathfrak{A}})$ is a compact set.
 2. The mapping $M_\omega(\mathfrak{S}_{\mathfrak{A}}) \ni \mu \mapsto \boxtimes \mu \in M^+(\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2})$ is weakly continuous.
 3. The continuity proved in the second step implies that the function (16) is a real valued, continuous function defined on a compact space.
 4. Hence, by Weierstrass theorem, infimum is attainable.

Therefore, the condition $d(\omega, A) = 0$ means that

$$\omega(A) = \int_{\mathfrak{S}_{\mathfrak{A}}} \xi(A) d\mu_0(\xi) = \int_{\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}} \xi(A) d\boxtimes \mu_0(\xi), \quad (17)$$

for all $A = A_1 \otimes A_2$.

But, this means the separability of ω !

- Theorem 4 may be summarized by saying that any separable state contains “classical” correlations only.
- Therefore, an entangled state contains “non-classical” (or pure quantum) correlations.

- To comment the question of separability of normal states we have two remarks:

1. *(indirect way)*

As we have considered C^* -algebra case, taking a normal state $\varphi \in \mathfrak{S}_{\mathfrak{M}}^n \equiv \mathfrak{S}_{\mathfrak{M}} \cap \mathfrak{M}_* \subset \mathfrak{S}_{\mathfrak{M}}$, we can apply Theorem 4 for its analysis.

If $d(\varphi, A) = 0$ we are getting a “separable” decomposition of φ .

However, still one must check whether components of the decomposition are normal or not. In other words, one must examine whether the measure providing the given decomposition is supported by $\mathfrak{S}_{\mathfrak{M}}^n$.

It is worth pointing out that the lecture fourth provides examples of measures being supported by $Ext(\mathfrak{S}_{\mathfrak{M}}^n)$ (if additionally the condition SC is satisfied).

2. (*a possibility for a direct way*)

One can try to modify the results obtained for C^* -algebra case to that which are relevant for W^* -algebra case.

However, there are two essential differences.

The first one: the closure of convex hull should be carried out with respect to the operator space projective norm topology.

The second difference leads to a great problem.

Namely $\mathfrak{S}_{\mathfrak{M}}^n$ is compact, in general, with respect to another topology than that which gives compactness of $\mathfrak{S}_{\mathfrak{M}}$.

To illustrate this let us consider $\mathfrak{M} = B(\mathcal{H})$, where \mathcal{H} is an infinite dimensional Hilbert space. Then $\mathfrak{S}_{B(\mathcal{H})}^n$ is a compact subset of $\mathcal{F}_T(\mathcal{H})$ when it is equipped with $\sigma(\mathcal{F}_T(\mathcal{H}), \mathcal{F}_C(\mathcal{H}))$ -topology.

$\mathfrak{S}_{B(\mathcal{H})}$ is compact with respect to $\sigma(B(\mathcal{H})^*, B(\mathcal{H}))$ -topology.

Moreover, although the restriction $(r\omega)(A) = \omega(A \otimes \mathbb{1})$, where $\omega \in (B(\mathcal{H}) \otimes B(\mathcal{H}))^*$ is also well defined for a density matrix (it is given by the partial trace) the restriction r is not, in general, $\sigma(\mathcal{F}_T(\mathcal{H} \otimes \mathcal{H}), \mathcal{F}_C(\mathcal{H} \otimes \mathcal{H})) - \sigma(\mathcal{F}_T(\mathcal{H}), \mathcal{F}_C(\mathcal{H}))$ continuous.

As the continuity of the restriction map r was crucial, the C^* -algebra case can not be straightforwardly modified.